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Introduction

• Diffusion models (DMs) excel in SR tasks but face high costs. 

• Binarization (1-bit quantization) reduces memory and computation. 

• However, the architecture and multi-step iterative design of DM limit its application.

• We propose BI-DiffSR, a novel binarized DM for image SR.

Motivation
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HR Bicubic SR3(FP) [1] BBCU(ICLR'22) [2] BI-DiffSR(ours)
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Overall

• The overall structure of the noise estimation network in BI-DiffSR.

• Analysis: UNet struggles with binarization due to dimension mismatch and fusion.
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Structure

• CP-Down/Up: Enables consistent reshaping, preserving full precision.

• CS-Fusion: Uses channel shuffle for balanced distribution, enhancing fusion.

Challenge

• Dimension Mismatch: 
Resolution changes 
disrupt full-precision 
propagation.

• Fusion Difficulty: 
Activation range 
differences hinder 
feature fusion.
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Activation

• Analysis: Activation distributions differ in multi-step iterations.

• TaR/TaA: Adjusts activations across timesteps, enhancing the binarized module.
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Ablation

• Break Down: Each module 
improves performance.

• CS-Fusion: Effectively fuses 
different features.

• Visualization: Distribution.
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Ablation

• Timestep-aware (TaA/TaR): Effective 
improvements are achieved only when both TaR
and TaA are used, with 5 biases and RPReLU
providing notable gains.

• Visualization: Five learnable biases in TaR.
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Quantitative

• Best Performance: Achieves the best results among recent binarization methods.

• Perceptual Metrics: Comparable to the full-precision SR3 model in LPIPS.
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Visual

• Our method 
restores clearer 
images with more 
texture details.

• The gap between 
BI-DiffSR and 
full-precision 
models is small.

Cost

• Runs much faster 
than full-precision 
methods.



Conclusion

We propose BI-DiffSR, a novel binarized DM for image SR.

Contribution

• Architecture: Design modules for binarization: CP-Down, CP-Up, CS-Fusion.

• Activation: Introduce TaR and TaA to enhance binarized modules.

• Performance: Outperforms SOTA binarization methods.

Poster

• Time: Fri 13 Dec 

11 a.m. - 2 p.m. PST
Project Thanks!
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